Selasa, 04 Desember 2007

Divisibility criteria

Divisibility criteria

  • Divisibility of numbers by 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.

  1. Divisibility by 2. A number is divisible by 2, if its last digit is 0 or is divisible by 2. Numbers, which are divisible by 2 are called even numbers. Otherwise, numbers are called odd numbers.
  2. Divisibility by 4. A number is divisible by 4, if its two last digits are zeros or they make a two-digit number, which is divisible by 4.
  3. Divisibility by 8. A number is divisible by 8, if its three last digits are zeros or they make a three-digit number, which is divisible by 8.
  4. Divisibility by 3 and by 9 . A number is divisible by 3, if a sum of its digits is divisible by 3. A number is divisible by 9, if a sum of its digits is divisible by 9.
  5. Divisibility by 6. A number is divisible by 6, if it is divisible by 2 and by 3.
  6. Divisibility by 5. A number is divisible by 5, if its last digit is 0 or 5.
  7. Divisibility by 25. A number is divisible by 25, if its two last digits are zeros or they make a number, which is divisible by 25.
  8. Divisibility by 10. A number is divisible by 10, if its last digit is 0.
  9. Divisibility by 100. A number is divisible by 100, if its two last digits are zeros.
  10. Divisibility by 1000. A number is divisible by 1000, if its three last digits are zeros.
  11. Divisibility by 11. A number is divisible by 11 if and only if a sum of its digits, located on even places is equal to a sum of its digits, located on odd places, OR these sums are differed by a number, which is divisible by 11.

Pembelajaran matematika berdasar teori Dienes

Teori Dienes

Zoltan P. Dienes adalah seorang matematikawan yang memusatkan perhatiannya pada cara-cara pengajaran terhadap anak-anak. Dasar teorinya bertumpu pada teori pieget, dan pengembangannya diorientasikan pada anak-anak, sedemikian rupa sehingga sistem yang dikembangkannya itu menarik bagi anak yang mempelajari matematika.

Dienes berpendapat bahwa pada dasarnya matematika dapat dianggap sebagai studi tentang struktur, memisah-misahkan hubungan-hubungan diantara struktur-struktur dan mengkatagorikan hubungan-hubungan di antara struktur-struktur. Dienes mengemukakan bahwa tiap-tiap konsep atau prinsip dalam matematika yang disajikan dalam bentuk yang konkret akan dapat dipahami dengan baik. Ini mengandung arti bahwa benda-benda atau obyek-obyek dalam bentuk permainan akan sangat berperan bila dimanipulasi dengan baik dalam pengajaran matematika.

Makin banyak bentuk-bentuk yang berlainan yang diberikan dalam konsep-konsep tertentu, akan makin jelas konsep yang dipahami anak, karena anak-anak akan memperoleh hal-hal yang bersifat logis dan matematis dalam konsep yang dipelajarinya itu.

Dalam mencari kesamaan sifat anak-anak mulai diarahkan dalam kegiatan menemukan sifat-sifat kesamaan dalam permainan yang sedang diikuti. Untuk melatih anak-anak dalam mencari kesamaan sifat-sifat ini, guru perlu mengarahkan mereka dengan mentranslasikan kesamaan struktur dari bentuk permainan yang satu ke bentuk permainan lainnya. Translasi ini tentu tidak boleh mengubah sifat-sifat abstrak yang ada dalam permainan semula..

Menurut Dienes konsep-konsep matematika akan berhasil jika dipelajari dalam tahap-tahap tertentu. Dienes membagi tahap-tahap belajar menjadi 6 tahap, yaitu:

1. Permainan Bebas (Free Play)

Dalam setiap tahap belajar, tahap yang paling awal dari pengembangan konsep bermula dari permainan bebas. Permainan bebas merupakan tahap belajar konsep yang aktifitasnya tidak berstruktur dan tidak diarahkan. Anak didik diberi kebebasan untuk mengatur benda. Selama permainan pengetahuan anak muncul. Dalam tahap ini anak mulai membentuk struktur mental dan struktur sikap dalam mempersiapkan diri untuk memahami konsep yang sedang dipelajari. Misalnya dengan diberi permainan block logic, anak didik mulai mempelajari konsep-konsep abstrak tentang warna, tebal tipisnya benda yang merupakan ciri/sifat dari benda yang dimanipulasi.

2. Permainan yang Menggunakan Aturan (Games)

Dalam permainan yang disertai aturan siswa sudah mulai meneliti pola-pola

dan keteraturan yang terdapat dalam konsep tertentu. Keteraturan ini mungkin terdapat dalam konsep tertentu tapi tidak terdapat dalam konsep yang lainnya. Anak yang telah memahami aturan-aturan tadi. Jelaslah, dengan melalui permainan siswa diajak untuk mulai mengenal dan memikirkan bagaimana struktur matematika itu. Makin banyak bentuk-bentuk berlainan yang diberikan dalam konsep tertentu, akan semakin jelas konsep yang dipahami siswa, karena akan memperoleh hal-hal yang bersifat logis dan matematis dalam konsep yang dipelajari itu. Menurut Dienes, untuk membuat konsep abstrak, anak didik memerlukan suatu kegiatan untuk mengumpulkan bermacam-macam pengalaman, dan kegiatan untuk yang tidak relevan dengan pengalaman itu. Contoh dengan permainan block logic, anak diberi kegiatan untuk membentuk kelompok bangun yang tipis, atau yang berwarna merah, kemudian membentuk kelompok benda berbentuk segitiga, atau yang tebal, dan sebagainya. Dalam membentuk kelompok bangun yang tipis, atau yang merah, timbul pengalaman terhadap konsep tipis dan merah, serta timbul penolakan terhadap bangun yang tipis (tebal), atau tidak merah (biru, hijau, kuning).

3. Permainan Kesamaan Sifat (Searching for communalities)

Dalam mencari kesamaan sifat siswa mulai diarahkan dalam kegiatan menemukan sifat-sifat kesamaan dalam permainan yang sedang diikuti. Untuk melatih dalam mencari kesamaan sifat-sifat ini, guru perlu mengarahkan mereka dengan menstranslasikan kesamaan struktur dari bentuk permainan lain. Translasi ini tentu tidak boleh mengubah sifat-sifat abstrak yang ada dalam permainan semula. Contoh kegiatan yang diberikan dengan permainan block logic, anak dihadapkan pada kelompok persegi dan persegi panjang yang tebal, anak diminta

mengidentifikasi sifat-sifat yang sama dari benda-benda dalam kelompok tersebut

(anggota kelompok).

4. Permainan Representasi (Representation)

Representasi adalah tahap pengambilan sifat dari beberapa situasi yang sejenis. Para siswa menentukan representasi dari konsep-konsep tertentu. Setelah mereka berhasil menyimpulkan kesamaan sifat yang terdapat dalam situasi-situasi yang dihadapinya itu. Representasi yang diperoleh ini bersifat abstrak, Dengan demikian telah mengarah pada pengertian struktur matematika yang sifatnya abstrak yang terdapat dalam konsep yang sedang dipelajari. Contoh kegiatan anak untuk menemukan banyaknya diagonal poligon (misal segi dua puluh tiga) dengan pendekatan induktif seperti berikut ini.

Segitiga Segiempat Segilima Segienam Segiduapuluhtiga

0 diagonal 2 diagonal 5 diagonal ..... diagonal ……. diagonal

5. Permainan dengan Simbolisasi (Symbolization)

Simbolisasi termasuk tahap belajar konsep yang membutuhkan kemampuan merumuskan representasi dari setiap konsep-konsep dengan menggunakan simbol matematika atau melalui perumusan verbal. Sebagai contoh, dari kegiatan mencari banyaknya diagonal dengan pendekatan induktif tersebut, kegiatan berikutnya menentukan rumus banyaknya diagonal suatu poligon yang digeneralisasikan dari pola yang didapat anak.

6. Permainan dengan Formalisasi (Formalization)

Formalisasi merupakan tahap belajar konsep yang terakhir. Dalam tahap ini siswa-siswa dituntut untuk mengurutkan sifat-sifat konsep dan kemudian merumuskan sifat-sifat baru konsep tersebut, sebagai contoh siswa yang telah mengenal dasar-dasar dalam struktur matematika seperti aksioma, harus mampu

merumuskan teorema dalam arti membuktikan teorema tersebut. Contohnya, anak didik telah mengenal dasar-dasar dalam struktur matematika seperti aksioma, harus mampu merumuskan suatu teorema berdasarkan aksioma, dalam arti membuktikan teorema tersebut.

Pada tahap formalisasi anak tidak hanya mampu merumuskan teorema serta membuktikannya secara deduktif, tetapi mereka sudah mempunyai pengetahuan tentang sistem yang berlaku dari pemahaman konsep-konsep yang terlibat satu sama lainnya. Misalnya bilangan bulat dengan operasi penjumlahan peserta sifat-sifat tertutup, komutatif, asosiatif, adanya elemen identitas, dan mempunyai elemen invers, membentuk sebuah sistem matematika. Dienes menyatakan bahwa proses pemahaman (abstracton) berlangsung selama belajar. Untuk pengajaran konsep matematika yang lebih sulit perlu dikembangkan materi matematika secara kongkret agar konsep matematika dapat dipahami dengan tepat. Dienes berpendapat bahwa materi harus dinyatakan dalam berbagai penyajian (multiple embodiment), sehingga anak-anak dapat bermain dengan bermacam-macam material yang dapat mengembangkan minat anak didik. Berbagai penyajian materi (multiple embodinent) dapat mempermudah proses pengklasifikasian abstraksi konsep.

Menurut Dienes, variasi sajian hendaknya tampak berbeda antara satu dan

lainya sesuai dengan prinsip variabilitas perseptual (perseptual variability), sehingga anak didik dapat melihat struktur dari berbagai pandangan yang berbeda-beda dan memperkaya imajinasinya terhadap setiap konsep matematika yang disajikan. Berbagai sajian (multiple embodiment) juga membuat adanya manipulasi secara penuh tentang variabel-variabel matematika. Variasi matematika dimaksud untuk membuat lebih jelas mengenai sejauh mana sebuah konsep dapat digeneralisasi terhadap konsep yang lain. Dengan demikian, semakin banyak bentuk-bentuk berlainan yang diberikan dalam konsep tertentu, semakin jelas bagi anak dalam memahami konsep tersebut.

Berhubungan dengan tahap belajar, suatu anak didik dihadapkan pada permainan yang terkontrol dengan berbagai sajian. Kegiatan ini menggunakan kesempatan untuk membantu anak didik menemukan cara-cara dan juga untuk mendiskusikan temuan-temuannya. Langkah selanjutnya, menurut Dienes, adalah memotivasi anak didik untuk mengabstraksikan pelajaran tanda material kongkret dengan gambar yang sederhana, grafik, peta dan akhirnya memadukan simbolo - simbol dengan konsep tersebut. Langkah-langkah ini merupakan suatu cara untuk memberi kesempatan kepada anak didik ikut berpartisipasi dalam proses penemuan dan formalisasi melalui percobaan matematika. Proses pembelajaran ini juga lebih melibatkan anak didik pada kegiatan belajar secara aktif dari pada hanya sekedar menghapal. Pentingnya simbolisasi adalah untuk meningkatkan kegiatan matematika ke satu bidang baru.

Dari sudut pandang tahap belajar, peranan guru adalah untuk mengatur belajar anak didik dalam memahami bentuk aturan-aturan susunan benda walaupun dalam skala kecil. Anak didik pada masa ini bermain dengan simbol dan aturan dengan bentuk-bentuk kongkret dan mereka memanipulasi untuk mengatur serta mengelompokkan aturan-aturan Anak harus mampu mengubah fase manipulasi kongkret, agar pada suatu waktu simbol tetap terkait dengan pengalaman kongkretnya.

Pembelajaran Matematika berdasar teori belajar Van Hiele

TEORI BELAJAR VAN HIELE

A. Pendahuluan

Dua tokoh pendidikan matematika dari Belanda, yaitu Pierre Van Hiele dan isterinya, Dian Van Hiele-Geldof, pada tahun-tahun 1957 sampai 1959 mengajukan suatu teori mengenai proses perkembangan yang dilalui siswa dalam mempelajari geometri. Dalam teori yang mereka kemukakan, mereka berpendapat bahwa dalam mempelajari geometri para siswa mengalami perkembangan kemampuan berpikir melalui tahap-tahap tertentu.

B. Tingkat kognitif menurut Van Hiele

Tahapan berpikir atau tingkat kognitif yang dilalui siswa dalam pembelajaran geometri, menurut Van Hiele adalah sebagai berikut:

Level 0. Tingkat Visualisasi

Tingkat ini disebut juga tingkat pengenalan. Pada tingkat ini, siswa memandang sesuatu bangun geometri sebagai suatu keseluruhan (wholistic). Pada tingkat ini siswa belum memperhatikan komponen-komponen dari masing-masing bangun. Dengan demikian, meskipun pada tingkat ini siswa sudah mengenal nama sesuatu bangun, siswa belum mengamati ciri-ciri dari bangun itu. Sebagai contoh, pada tingkat ini siswa tahu suatu bangun bernama persegipanjang, tetapi ia belum menyadari ciri-ciri bangun persegipanjang tersebut.

Level 1. Tingkat Analisis
Tingkat ini dikenal sebagai tingkat deskriptif. Pada tingkat ini siswa sudah mengenal bangun-bangun geometri berdasarkan ciri-ciri dari masing-masing bangun. Dengan kata lain, pada tingkat ini siswa sudah terbiasa menganalisis bagian-bagian yang ada pada suatu bangun dan mengamati sifat-sifat yang dimiliki oleh unsur-unsur tersebut

Sebagai contoh, pada tingkat ini siswa sudah bisa mengatakan bahwa suatu bangun merupakan persegipanjang karena bangun itu “mempunyai empat sisi, sisi-sisi yang berhadapan sejajar, dan semua sudutnya siku-siku”

Level 2. Tingkat Abstraksi

Tingkat ini disebut juga tingkat pengurutan atau tingkat relasional. Pada tingkat ini, siswa sudah bisa memahami hubungan antar ciri yang satu dengan ciri yang lain pada sesuatu bangun. Sebagai contoh, pada tingkat ini siswa sudah bisa mengatakan bahwa jika pada suatu segiempat sisi-sisi yang berhadapan sejajar, maka sisi-sisi yang berhadapan itu sama panjang. Di samping itu pada tingkat ini siswa sudahmemahami pelunya definisi untuk tiap-tiap bangun. Pada tahap ini, siswa juga sudah bisa memahami hubungan antara bangun yang satu dengan bangun yang lain. Misalnya pada tingkat ini siswa sudah bisa memahami bahwa setiap persegi adalah juga persegipanjang, karena persegi juga memiliki ciri-ciri persegipanjang.

Berikut ini merupakan contoh pekerjaan siswa pada level 2.


Level 3. Tingkat Deduksi Formal

Pada tingkat ini siswa sudah memahami perenan pengertian-pengertian pangkal, definisi-definisi, aksioma-aksioma, dan terorema-teorema dalam geometri. Pada tingkat ini siswa sudah mulai mampu menyusun bukti-bukti secara formal. Ini berarti bahwa pada tingkat ini siswa sudah memahami proses berpikir yang bersifat deduktif-aksiomatis dan mampu menggunakan proses berpikir tersebut.

Level 4. Tingkat Rigor

Tingkat ini disebut juga tingkat metamatematis. Pada tingkat ini, siswa mampu melakukan penalaran secara formal tentang sistem-sistem matematika (termasuk sistem-sistem geometri), tanpa membutuhkan model-model yang konkret sebagai acuan. Pada tingkat ini, siswa memahami bahwa dimungkinkan adanya lebih dari satu geometri.

Sebagai contoh, pada tingkat ini siswa menyadari bahwa jika salah satu aksioma pada suatu sistem geometri diubah, maka seluruh geometri tersebut juga akan berubah. Sehingga, pada tahap ini siswa sudah memahami adanya geometri-geometri yang lain di samping geometri Euclides.

Menurut Van Hiele, semua anak mempelajari geometri dengan melalui tahap-tahap tersebut, dengan urutan yang sama, dan tidak dimungkinkan adanya tingkat yang diloncati. Akan tetapi, kapan seseorang siswa mulai memasuki suatu tingkat yang baru tidak selalu sama antara siswa yang satu dengan siswa yang lain.

Selain itu, menurut Van Hiele, proses perkembangan dari tahap yang satu ke tahap berikutnya terutama tidak ditentukan oleh umur atau kematangan biologis, tetapi lebih bergantung pada pengajaran dari guru dan proses belajar yang dilalui siswa.
C.
Implementasi teori Van Hiele dalam Pembelajaran
Untuk meningkatkan suatu tahap berpikir ke tahap berpikir yang lebih tinggi Van Hiele mengajukan pembelajaran yang melibatkan 5 fase (langkah), yaitu ; informasi (information), orientasi langsung (directed orientation), penjelasan (explication), orientasi bebas (free orientation), dan integrasi (integration).

Fase 1 : Informasi (information)

Pada awal fase ini, guru dan siswa menggunakan tanya jawab dan kegiatan tentang obyek-obyek yang dipelajari pada tahap berpikir yang bersangkutan. Guru mengajukan pertanyaan kepada siswa sambil melakukan observasi. Tujuan kegiatan ini adalah :

a. Guru mempelajari pengetahuan awal yang dipunyai siswa mengenai topik yang di bahas.

b. Guru mempelajari petunjuk yang muncul dalam rangka menentukan pembelajaran selanjutnya yang akan diambil.

Fase 2 : Orientasi langsung (directed orientation)

Siswa menggali topik yang dipelajari melalui alat-alat yang dengan cermat disiapkan guru. Aktifitas ini akan berangsur-angsur menampakkan kepada siswa struktur yang memberi ciri-ciri untuk tahap berpikir ini. Jadi, alat ataupun bahan dirancang menjadi tugas pendek sehingga dapat mendatangkan repon khusus.

Fase 3 : Penjelasan (explication)

Berdasarkan pengalaman sebelumnya, siswa menyatakan pandangan yang muncul mengenai struktur yang diobservasi. Di samping itu untuk membantu siswa menggunakan bahasa yang tepat dan akurat, guru memberi bantuan seminimal mungkin. Hal tersebut berlangsung sampai sistem hubungan pada tahap berpikir ini mulai tampak nyata.

Fase 4 : Orientasi bebas (free orientation)

Siswa mengahadapi tugas-tugas yang lebih komplek berupa tugas yang memerlukan banyak langkah, tugas-tugas yang dilengkapi dengan banyak cara, dan tugas-tugas open ended. Mereka memperoleh pengalaman dalam menemukan cara mereka sendiri, maupun dalam menyelesaikan tugas-tugas. Melalui orientasi diantara para siswa dalam bidang investigasi, banyak hubungan antara obyek-obyek yang dipelajari menjadi jelas.

Fase 5 : Integrasi (Integration)

Siswa meninjau kembali dan meringkas apa yang telah dipelajari. Guru dapat membantu dalam membuat sintesis ini dengan melengkapi survey secara global terhadap apa-apa yang telah dipelajari siswa. Hal ini penting tetapi, kesimpulan ini tidak menunjukkan sesuatu yang baru.